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ABSTRACT
In this paper, we propose a robust low-cost mocap system (mocap)
with sparse sensors. Although the sensor with an accelerometer,
magnetometer, and gyroscope is cost-effective and offers the mea-
sured positions and rotations from these devices, it potentially
suffers from noise, drift, and lost issues over time. The resulting
character obtained from a sensor-based low-cost mocap system is
thus generally not satisfactory. We address these issues by using
a novel deep learning framework that consists of two networks, a
motion estimator and a sensor data generator. When the aforemen-
tioned issues occur, the motion estimator feeds the newly synthe-
sized sensor data obtained with the measured and predicted data
from the sensor data generator until the issues have been resolved.
Otherwise, the motion estimator receives the measured sensor data
to accurately and continuously reconstruct the new character poses.
In our examples, we show that our system outperforms the previous
approach without the sensor data generator and we believe that it
can be considered a handy and robust mocap system.
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1 INTRODUCTION
Mocap systems are now widely used as a tool for efficiently produc-
ing virtual characters in many VFX and gaming companies and are
also utilized to analyze human movement for clinical and rehabili-
tation purposes. An optical mocap system is a sufficiently accurate
method of recording human motions. However, it is very expensive
and imposes tedious workloads when setting up a capture volume,
as multiple cameras should be well positioned around the desired
capture volume to stably detect the trajectories of several markers
placed at key locations on the actor’s body. Meanwhile, the current
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Figure 1: System overview: We independently train the sen-
sor data generator and motion estimator and use them to
reconstruct human motion from sparse sensors.

commercially available sensor-based mocap systems are less expen-
sive and easy to use when compared to the optical mocap system
but dozens of sensors are generally needed to compute a full body
character pose. In addition, most of them are highly dependent
on conventional Inverse Kinematics (IK) schemes, thereby often
producing unnatural motions owing to insufficient reflection of
details of real human movement. Also, the sensors that provide
positions and rotations potentially suffer from noise, drift, and lost
issues over time. Therefore, our goal is to establish a robust deep
learning-based low-cost mocap system with a minimal number of
sensors for recording a faithful full-body character.

Our system is an interchangeable neural network system consist-
ing of a motion estimator and a sensor data generator, as shown in
Figure 1. The motion estimator is based on a Bidirectional Recurrent
Neural Network (BRNN) trained using a large amount of mocap
data to reconstruct human motion from six sensors attached on
the actor’s body. Since we utilize the BRNN for the past and future
observations, our system leads to better performance for training
sequential data than other networks. We also embed a multi-head
attention mechanism [Vaswani et al. 2017] into our networks for se-
lectively weighting hidden variables for better estimation of output
motions and to achieve fast learning. A sensor data generator based



SA ’20 Posters, November 17-20, 2020, Daegu, Republic of Korea Seong Uk Kim, Hanyoung Jang, and Jongmin Kim

on the auto-conditioned Recurrent Neural Network (acRNN) [Zhou
et al. 2018] is employed for future sensor data prediction from the
observed sequences. When the measured sensor data are invalid,
the motion estimator feeds the new sensor data computed with
the measured and predicted data from the sensor data generator
until the issue of invalid data is resolved. Otherwise, the measured
sensor data are used as the motion estimator input to efficiently
and continuously reconstruct character animation.

2 OUR APPROACH
We use the CMU mocap data to train our system ([CMU 2013]). In
the preprocessing step, all characters from the CMU mocap data
are retargeted to the template body configuration by solving the
numerical IK, and each character consists of 31 joins in total. We
use six sensors placed on the end-effectors and the root joint. The
length of each motion clip and sensor data sequences 𝑛 is 240.
Training mocap data provide both input and output data for our
neural network system. We extract the positions and rotations of
the joints from them.

The input of the motion estimator and sensor data generator
X = {x1, x2, . . . , x𝑛} is composed of positions and rotations and the
sensor data generator output is X̃ = {x̃1, x̃2, . . . , x̃𝑛}. The output
of the motion estimator is represented as the joint rotations Y =

{y1, y2, . . . , y𝑛}. The Long Short-Term Memory (LSTM) is used for
the motion estimator and sensor data generator, and fully connected
layers are also used for generating the output motion. Multi-head

Figure 2: The sensors depicted in the highlighted red circles
suffer from noisy issues. The resulting motion 𝝓(X̃) is gen-
erated in a period of time ranging from 𝑡 to 𝑡 +𝑇 /2 where 𝑡 is
the time when those issues take place. Here, 𝝓(·) represents
the motion estimator and 𝑇 = 120 is a maximum length for
stably generating future sensor data. We start to interpolate
between x̃𝑡+𝑇 /2 and x𝑡+𝑇 for obtaining the interpolated sen-
sor data X̄. The resulting motion 𝝓(X̄) is then produced in a
period of time ranging from 𝑡 + 𝑇 /2 to 𝑡 + 𝑇 . We linearly in-
terpolate the sensor positions and perform spherical linear
interpolation on sensor rotations.
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Figure 3: Quantitative performances of four different neural
networks relative to ours. Our network accurately estimates
the human motion from the test mocap data set.

attention is employed with the BRNN for the motion estimator.
When the measured sensor data are invalid, the new sensor data X̄
are obtained by independently interpolating the sensor positions
and rotations. The interpolated 𝑥𝑖𝑡 at the 𝑖-th sensor of the 𝑡-th
frame is defined as 𝑥𝑖𝑡 = x̃𝑇 ′ ⊗ (x𝑡+𝑇 ⊘ x̃𝑇 ′)𝛼𝑖

𝑡 , where 𝛼𝑖𝑡 is an ease-
in/ease-out function with 0≤𝛼𝑖𝑡≤1 and 𝑇 ′ = 𝑡 +𝑇 /2 (see Figure 2
for more details). We would like to refer the reader to [Lee 2008]
for the mathematical notations. The computed X̄ is entered into the
motion estimator and the character animation Y is then obtained.

We train the network in such a way as to minimize the prediction
and smoothness loss functions. Note that the sensor data generator
and the motion estimator are trained independently. The L2 norm
distance is defined as the error between the predicted and training
motion and we also regularize the network parameters.

3 RESULTS
Our system effectively generates believable character animation
from sparse sensors owing to the well-established deep learning
framework. To achieve better accuracy, the ability to intelligently
synthesize the new sensor data using the measured and predicted
data from the sensor data generator when the sensor data are not
valid is a key feature of the proposed system. We evaluated the
reproduction errors in terms of mean and standard deviation with
other deep learning architectures (Figure 3) and showed that the
proposed system outperforms the others.
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